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We study the problem of coding for Pierce’s recent model for optical communication.
We conclude that for any positive rate p (measured in nats per photon), the best code of
length n has an error probability bounded by an exponentially decaying function of n;
we exhibit explicit practical schemes for p < ~1; and give evidence that p = 1 may be
the “practical limit” for optical communication.

l. Introduction

In a recent paper Pierce (Ref. 1) has shown that if one uses
photon-counting techniques for communication at optical fre-
quencies, and low noise temperatures, the rate at which one can
operate is at most iffkt = 4.80 X 10711 (f/T) nats per photon,
where f is the photon frequency in hertz and T is the noise
temperature in kelvin. This number is typically fairly large;
for example f = 6 X 1014 Hz, T = 400 K gives a limit of
72 nats per photon. Pierce observed, however, that if one
attempts to design a practical communication system for such
a channel, one encounters severe problems of coding com-
plexity long before the limiting rate of Af/kT is reached.
Moreover, these problems are not caused by thermal noise,
but rather by the nature of the photon-counting process
itself. We shall now describe Pierce’s “noiseless” photon chan-
nel, and devote the rest of our article to a discussion of the

coding problem for this channel.

We assume that the data to be transmitted consists of a
long stream of 0’s and 1’s: x,,x,,x5, ..., and that the time
interval during which these bits are to be transmitted is divided
into small intervals (“slots”) of duration 7, seconds each.
The transmitter is a semiconductor laser which is pulsed
during the ith time interval if and only if x; = 1. The expected
number of photons emitted during such a pulse we denote by

A. The receiver is a photon counter; it emits a 1 if it is struck
by one or more photons in a given time slot, and a 0 if it is
not. If the laser is not pulsed, of course it emits no photons;
hence a transmitted O is always received correctly. On the
other hand, if the laser is pulsed, because of the Poisson
statistics which govern photon emissions, there is a nonzero
probability e~* that no photons will be emitted. Hence a
transmitted 1 is received incorrectly as a O with probability
e*. In effect, then, the photon channel is just the “Z-channel”
familiar to information theorists (see Fig. 1), where the cross-
over probability € is equal to e™*.

In Ref. 1 Pierce considered the following coding scheme
for this channel. There are n distinct binary codewords, each
of length n. Each codeword has a 1 in one coordinate only.
Since there are n codewords, each carries log n nats! of
information. Furthermore, the transmission of each codeword
requires exactly one pulse and hence an average of A photons.
Hence the rate of transmission, measured in nats per photon,
is given by p = (log n)/\. The probability that the codeword
will be received incorrectly is just the probability e™* that
no photons will be emitted by the laser during one pulse
period. Since A = p~! log n, it follows that if we use this

1 Throughout the paper ail logarithms will be natural.
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scheme at a rate of p nats per photon, the error probability
will be

Py = p-(1/e) (1)

Hence for any desired rate of transmission p, however large,
by choosing n large enough, one can make the receiver error
probability arbitrarily small.

In practice, however, Pierce’s codes are not of much use,
unless p is quite small. For example, at p = 1 nat per photon,
and P, = 107, Eq. (1) implies that # must be at least 10°.
The problem is of course that the decay of Pg in n and p
is very slow. In Ref. 2 it was shown that there exist codes
of length » for which P, decays exponentially as a function of
p~1, p = 0. In this paper we shall show that for any fixed
value of p, however large, there exists a sequence of codes of
increasing length all having rate at least p nats per photon,
whose error probabilities decay exponentially as a function of
the code length. In Section Il we will prove this fact (the main
idea of the proof is to use Pierce’s coding scheme as a modula-
tion scheme for more complex codes); in Section III we will
exhibit some codes which are practical and give good perfor-
mance for p < ~1 nat per photon. (These simple codes will
outperform any possible coding strategy if one uses coherent
signal amplification rather than photon-counting techniques,
because p = | nat/photon is the capacity of the optical chan-
nel when linear amplification is used (Ref. 1). Finally, in
Section IV we will give evidence (but no proof) that it is
probably very difficult to design practical systems that operate
at rates much larger than 1 nat per photon.

ll. An Exponential Error Probability Bound

In this section we will show that there exists a function
E(p), which is positive for all p > 0, such that for any p > 0
there exists a sequence of codes Cy, C,, C5, . . ., of increasing
block length, each having rate at least p nats per photon, such
that the decoding error probability for the kth code satisfies

Pp < exp [-n E(p)], (2)
where n,_is the length of the kth code.

Thus let p > 0 be fixed. Choose a positive integer g
satisfying

4> e, (3)

Having selected ¢, choose a real number R, 0 < R < 1,
satisfying
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;% log(1- R)<p llogq. (4)

(This is possible since by Eq. (3) p~! log ¢ > 1; and the left
side of Eq. (4) is an increasing function of R and approaches 1
as R ~>0).

Now consider a g-ary erasure channe! with erasure proba-
bility e. This channel has input alphabet A, = {1,2,..., g}
and output alphabet A'q =4,V {e }, where “¢” is an erasure
symbol. The channel’s transition probabilities are

1-€ if x=y

Pyix) = e if y=e

0 otherwise

Thus each symbol is transmitted correctly with probability
1 - €, and “‘erased” with probability e. This channel has
capacity (1 - €) log ¢, and so according to the noisy-channel
coding theorem (see Ref. 3, Chapter 5), for any R < (1 - ¢€),
and any positive integer NV there exists a code of length NV with
at least ¢®%Y codewords, whose decoding error probability
satisfies

P. < exp [FNE(R)], (5)

where £,(R), the random coding exponent for the channel,
is a function which is positive for all R <1 - €.

Our object is now to use these codes, on the “photon
Z-channel.” To do this we must have a “modulation” scheme
which will allow us to transmit symbols from Aq ={1,2,...,
q } over the Z-channel. The modulation scheme we use is as
follows: we assign each symbol from A, a unique binary
vector of length ¢ containing one “1.” For example, with
q = 4 the assignment could be

1 : 1000
2 : 0100
3 : 0010
4 : 0001

(This is exactly Pierce’s quantized pulse position modulation
described in Ref. 1 and Section 1.)

When one of these length g binary patterns is transmitted
over the Z-channel, the “demodulator” looks for a 1>’ among
the g received bits;if a ““1” is detected in the k th position, the
demodulator knows for certain that the transmitted symbol



was k. If, however, no 1’s are detected, the demodulator has
no idea what was sent and outputs the erasure symbol “e.”
It follows that when this particular modulation scheme is
adopted, the Z-channel becomes a g-ary erasure channel
whose erasure probability € is equal to the crossover proba-
bility of the Z-channel.

The code of length NV has at least g8~ codewords and so
each codeword conveys at least RV log g nats of information.
Since transmission of each codeword requires exactly NV pulses,
we are getting at least R log ¢ nats per pulse. If we are trans-
mitting at rate p nats per photon, this means that we need at
most,

X = p~ ! Rlogq photons per pulse. (6)

Hence if we operate the laser at X photons per pulse. where
A is given by Eq. (6), our coding scheme will operate at p nats
per photon. Now according to the Poisson statistics governing
photon emission, this means that the erasure probability €
for the g-ary erasure channel is

e =g RIP (7)

Hence if the code’s (g-ary) rate R is less that the channel’s
(g-ary) capacity 1 - €, we can get exponential decay of the
error probability. This condition is

R <1 -qRIP (8)

which is just a restatement of Eq. (4). Hence it follows that for
every IV there exists a code of rate R, whose error probability
satisfies Eq. (5). This code, viewed as a code for the Z-channel,
has length n = gV, and so its error probability satisfies

P < exp[-nk (R)/q]. %)

Since for fixed p > 0, and ¢,R satisfying Eqgs. (3) and (4) we

have E(R)/q > 0O, it follows that there exists a function
E(p) such that

P, <exp[-nE(p)],

(10)
which is what we set out to prove.

We have made no attempt to give numerical bounds on
E(p); it would be interesting to do this, however.

In the next section, we will show how the technique just
described can be used to design practical coding schemes
for the photon channel in the range p < ~1 nats/photon.

lli. Practical Schemes forp = ~ 1

In this section we will give explicit examples of the coding
schemes described in Section II; these will turn out to be
easily implemented and have low error probabilities, provided
p is not much larger than 1 nat/photon.

As before, for a given rate p, choose a positive integer
q > exp(p). Using the modulation scheme described in Sec-
tion II, the Z-channel becomes a g-ary erasure channel, and
we must design a code over the alphabet 4, capable of cor-
recting as many erasures as possible. An obvious choice is the
class of Reed-Solomon codes, which require only that g be
a power of a prime.

Over the alphabet Aq (which we now view as a finite field),
Reed-Solomon codes are linear cyclic codes of lengthn=¢g- 1,
arbitrary dimension 1 < k< n - [, with minimum distance
d =n - k + 1. They will correct any pattern of up ton - k
erasures, and very efficient encoding and decoding procedures
are known, when ¢ is a power of 2 (see Ref. 5, Chapter 8 for
details).

If we use an (n,k) Reed-Solomon code for the present
application, each of the g* codewords carries k log g nats of
information, and each codeword requires n pulses. Thus if we
are transmitting at o nats/photon, the average number of
photons per pulse is at most (cf. Eq. (6)).

A=

SNES

- p~! log ¢ photons per pulse. (11)

It follows that the erasure probability for the corresponding
g-ary erasure channel is (at worst)

e =M= g RIP (11a)

where R = k/n is the code rate. Since the RS code can correct
all patterns of up to n - k erasures, it follows that the decod-
ing error probability P satisfies

P, < 5,: <’;)ej(l~e)”_j. (12)

j=n—k+1

In Fig. 2 we have plotted P, vs p for four typical RS
codes. The curve labelled ¢ = 16 is a (15,8) RS code with
q = 16; the others are (31,16) g = 32;(63,32), g = 64; and
(127,64), g = 128. 1t is seen that the performance of all of
these codes degrades rapidly as p increases beyond 1. (It is
to be recalled that as codes for the photon channel, the length
is actually 16 ¢+ 15 = 240 for the ¢ = 16 codes; n =31 - 32 =
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992 for the ¢ = 32 code; n = 4032 for ¢ = 64;and n = 16256
for g = 128.) Each of these codes is the best of its length, at
least in the limit as p > 0, and so no significant improvement
could be expected merely by altering the code’s rate. We
conclude that for p <X ~1 practical schemes exist. In the
next section we give evidence that p 2 ~1 may be very hard
to achieve.

IV. R, for the Photon-Detection Channel

Associated with any discrete memoryless channel there is
a number C, called channel capacity, which represents the
theoretical maximum rate at which one can communicate
reliably over the channel. However, it is usually extremely
difficult to operate at rates very close to C, and it has been
conjectured (see e.g., Ref. 4) that another number, R, which
is associated with every discrete memoryless channel, is a more
realistic measure of the maximum rate of practical reliable
communication. In this section we shall show that for our
photon-counting Z-channel, the value of p corresponding to
R, is exactly 1 nat/photon; this number, incidentally, is the
limiting value (capacity) for coherent optical communication
systems (Ref. 1).

Given a discrete memoryless channel with input alphabet
Ay, output alphabet A, and transition probabilities p(y Ix),
we can state the “R-conjecture” as follows. “Any practical
communication system, in which the relative frequencies with
which the input symbols x € A, are used are described by
the probability distribution p(x), must operate at a rate R
satisfying

R <~log 3 [E p(x)\/pmx)T = Ry(p).”
X

yeAy eAX

(13)

In the specific case of the Z-channel with erasure proba-
bility €, with p(x=0) = 1 -8, p(x=1) = §, the quantity on the
right side of Eq. (13) is given by

R, (8) = -log [1-28(1 - 8)(1 - €'/?)]. (14)

If we are using a code of length # and rate R for the photon-
counting Z-channel, in which the average number of 1’s per
codeword is 6n, a calculation similar to that which led to
Eq. (16) and Eq. (11) shows that the average number of
photons per pulse must be

& = R/pd photons per pulse. (15)

Thus the erasure probability for the Z-channel is

€ = exp(-R/pd) (16)
and the inequality Eq. (13) becomes
R < -log{1-25(1-8)[1-exp(-R/208)]}  (17)

Our result is the following.

Theorem: There exist real numbers (R,6) 0 < R < log 2,
0 <& <1 satisfying Eq. (17) if and only if p < 1. Hence any
system for the photon-counting Z-channel for which p = 1
must violate Eq. (13).

Proof: First assume p < 1, and define « = R/28. Thena > 0
and Eq. (17) becomes

205 < -log {1 - 25(1-8) [1-exp(-a/p)l}. (18)

Now choose « satisfying

o < 1-e 9P (19)

(This is possible since p < 1.) For this fixed value of a the
right side of Eq. (18) is equal to 28(1 - e~%/?) + 0(52). It
follows that Eq. (18) is satisfied for all sufficiently small
8 > 0. Thus with R =2a6 and & small enough, Eq. (17) is
satisfied.

Now assume p 2 1. Then exp(-a/p) = exp(-a), and the
right side of Eq. (18) is bounded as follows:

—log{I -28(1-8)[1- exp(—a/p)]}
< -log { 1-256(1-8)[1- exp(—a)]} (20)

If we replace the right side of Eq. (18) by its upper bound
(Eq. 20)), a little rearrangement yields



1 - exp(-2ad) (The proof of the lemma is elementary and is omitted.)

-8). 21
1-exp(-o) <28(1-9) 1)
Now let y = exp(~a), k = 25. Then the left side of Eq. (21)

is (1 - y%)/(1 - y). By the lemma, this is 226 if 26 < 1; thus
Eq. (21) implies 26 < 28(1 - 26), a contradiction. If 26 = 1,

Lemma: Let k>0, f(y) = (1~ y¥)/(1-y). Then

_ k for k<1 then Eq. (21) gives 1 < 28(1 - §), another contradiction,
inf f(y) = since 26(1 - 8) < 1/2 for 0 <& < 1. This completes the proof
0<y<1 1 for k=1 of the theorem.
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Fig. 2. Performance of some RS codes on the photon channel



